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Abstract

The present work investigates the prediction of mean temperature profiles in turbulent channel flow using the fraction of the heat flux
due to turbulence. According to this new model, suggested by Churchill and co-workers, fully developed flow and convection can be
expressed as local fractions of the shear stress and the heat flux density due to turbulent fluctuations, respectively. The fully developed
temperature profile can be predicted if the velocity field and the turbulent Prandtl number are known. Temperature profiles for Pr

between 0.01 and 50,000 have been obtained theoretically and with simulations through the use of Lagrangian methods for both plane
Poiseuille flow and plane Couette flow. The half channel height for all simulations was h = 150 in wall units. The theoretical predictions
have been found to agree with the data quite well for a range of Pr, but there are deviations at very high Pr.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Scaling questions about the law of the wall (a bulwark of
turbulence theory) in low and intermediate Reynolds num-
bers (i.e., flow in channels and pipes, instead of infinite
boundary layers) have been raised for the velocity field
[1–7]. It is now argued that turbulence quantities do not
scale with the viscous wall parameters, as defined conven-
tionally, and that a Reynolds number effect is present. Sim-
ilar issues can be raised for the equivalent of the law of the
wall for heat transfer. Results from direct numerical simu-
lations have shown that scaling with the wall parameters
for low Reynolds numbers does not provide universal
behavior for the fluctuating thermal field [8–10]. However,
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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an effort to explore the scaling of heat transfer similar to
that for momentum has not been vigorously pursued, with
the notable exception of Churchill and coworkers [11–14]
who suggested the use of the local fraction of the heat flux
density due to turbulent fluctuations to predict the mean
temperature, introducing, thus, the use of a scale different
than the conventional friction temperature.

An algebraic model for the prediction of mean turbu-
lence quantities was first introduced by Churchill and Chan
[11] in 1995; it has been suggested to be superior in several
aspects when compared with other conventional algebraic
models that are based on empiricisms and approximations.
Heuristic concepts, like the eddy diffusivity or the mixing
length that are not fundamentally sound, are totally
avoided. According to this new model, fully developed flow
and convection can be expressed as fractions, respectively,
of shear stress and heat flux density due to turbulent fluc-
tuations. The mean temperature profile can be predicted
based on exact equations, given the velocity profile and
the turbulent Prandtl number. This is a very significant
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Nomenclature

Cf correction factor defined in Eqs. ((22))
Cp specific heat at constant pressure (kJ/(kg K))
Ea eddy diffusivity (kg/(m s))
Em eddy viscosity (kg/(m s))
h half height of the channel (m)
k thermal conductivity (W/(m K))
P1 conditional probability for a marker to be at a

location (x,y) at time t, given that it was re-
leased at a known time from a known location
at the channel wall

P2 joint probability for a marker to be at a location
(x,y)

Pr Prandtl number, Pr = m/a
Prt turbulent Prandtl number, Prt = Em/Ea

q heat flux (kW/m2)
Re Reynolds number, Re = Uch/m
T temperature (K)
T* friction temperature, T* = qw/(qCpu*)
T mean temperature (K)
T 0 temperature fluctuation (K)
T 0v0 normal heat flux
t time (s)
t0, tf initial and final time of tracking markers (s)
U velocity (m/s)
U mean velocity (m/s)

u* friction velocity, u* = (sw/q)1/2 (m/s)
u0v0 normal shear stress
x,y,z streamwise, normal and spanwise coordinates
X,Y Lagrangian displacement of a marker from the

source in the x,y directions

Greek symbols

a thermal diffusivity (m2/s)
c correction term defined in Eq. (6)
m kinematic viscosity (m2/s)
p trigonometric pi (p = 3.14159. . .)
q fluid density (kg/m3)
r standard deviation of the pdf that describes the

diffusive motion of the heat markers
s shear stress (Pa)

Superscripts and subscripts

ð Þ ensemble average

ð Þ
!

vector quantity

( )+ value made dimensionless with the wall parame-
ters

( )++ local fraction due to turbulence
( )* friction value
( )0 value at the instant of marker release
( )w value at the wall of the channel
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contribution in the area of turbulent convection, especially
given the semi-empirical predictive capabilities of the past
[15]. In addition, the concept of a scale that is directly asso-
ciated with turbulence, like the fraction of the local heat
flux due to turbulence suggested by Churchill, seems more
natural, when contrasted to scaling based on the wall fric-
tion temperature (which is dependent only on viscous
effects). In other words, since the temperature fluctuations
are generated due to velocity fluctuations and their produc-
tion occurs within the conductive wall layer but not at the
wall, it makes sense to predict turbulent transfer based on a
turbulence quantity rather than a viscous one.

Churchill et al. [16] have recently conducted an analysis of
the sensitivity of the new algebraic model to the numerical
empiricisms and empirical functions that enter into it. They
found that predictions are rather insensitive to reasonable
changes in the empirical parameters of the model. On the
other hand, comparison of the model predictions to either
simulation results or experimental measurements for a truly
extensive range of data has not been reported. This is the
space that the present paper covers: the verification of the
Churchill model for a range of fluids (i.e., a range of Prandtl
numbers) and for fundamentally different turbulent velocity
fields (i.e., pressure driven and shear driven). Our research
group has used direct numerical simulation (DNS) in con-
junction with Lagrangian scalar tracking (LST) to study tur-
bulent transport for an extensive range of Prandtl numbers
(from Pr = 0.01 to 50,000) in Poiseuille channel flow [17,18]
and in Couette flow [18,19]. Mean temperature profile predic-
tions through this method agree very well with previous
experimental and direct numerical simulation results, and,
quite importantly, they have been obtained with a consistent
methodology that has been used for a range of cases where
conventional Eulerian direct simulations are not yet feasible.

2. Background and theory

2.1. Eulerian heat transfer

In the Eulerian framework, the temperature T can be
decomposed into the mean temperature T and the fluctua-
tion T 0. The temperature is conventionally made dimension-
less by normalizing with the friction temperature T*,
T* = qw/(qCpu*), where qw is the heat flux at the wall defined
in terms of the thermal conductivity of the fluid k as

qw ¼ �k
dT
dy

� �
w

ð1Þ

Therefore, a dimensionless temperature T+ can be calcu-
lated by

Tþ ¼ T
T �
¼ � TqCpu�

k dT
dy

� �
w

¼ �Pr
T

dT
dyþ

� �
w

ð2Þ
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2.2. The Churchill algebraic model

We present here a brief overview of the model – more
details can be found in the original publications. Churchill
and Chan [11] have rewritten the time-averaged, once-inte-
grated differential representation for the conservation of
momentum for fully developed turbulent flow field as

s
sw

¼ dUþ

dyþ
þ ðu0v0Þþ ð3Þ

where y+ is the distance from the wall in viscous wall units
and (y+ = yu*/m), Uþ is the dimensionless mean velocity
ðUþ ¼ U=u�Þ. They have also derived and introduced the
dimensionless quantity ðu0v0Þþþ, which represents the local
fraction of the shear stress due to fluctuations in velocity.
Eq. (3) therefore was written as

s
sw

½1� ðu0v0Þþþ� ¼ dUþ

dyþ
ð4Þ

where ðu0v0Þþþ ¼ �qu0v0=s.
In analogy to momentum transfer, turbulent heat trans-

fer based on the fraction of the heat flux that is due to tur-
bulence has been studied more deeply in recent papers by
Churchill and coauthors [12,14,20,21]. These papers were
focused on the temperature predictions in turbulent flow
q
qw

¼ ð1þ cÞ 1� yþ

hþ

� �
¼

1� yþ

hþ

� � R yþ

0
1� ðu0v0Þþþ
h i

1� yþ

hþ

� �
dyþ þ

R hþ

yþ 1� ðu0v0Þþþ
h i

1� yþ

hþ

� �2

dyþR hþ

0
1� ðu0v0Þþþ
h i

1� yþ

hþ
� �2

dyþ
ð9Þ
fields, in round tubes [20] and between parallel plates
[21]. The time-averaged energy balance for steady, fully
q
qw

¼ ð1þ cÞ 1� yþ

2hþ

� �
¼

1� yþ

2hþ

� � R yþ

0
1� ðu0v0Þþþ
h i

1� yþ

2hþ

� �
dyþ þ

R hþ

yþ 1� ðu0v0Þþþ
h i

1� yþ

2hþ

� �2

dyþR hþ

0
1� ðu0v0Þþþ
h i

1� yþ

2hþ
� �2

dyþ
ð10Þ
developed convection in the turbulent flow of a Newtonian
fluid between parallel plates was rewritten in terms that uti-
lized the local fraction of the heat flux due to fluctuations
T 0v0þþ

q
qw

½1� ðT 0v0Þþþ � ¼ dTþ

dyþ
ð5Þ

where ðT 0v0Þþþ ¼ �qCpT 0v0=q.
In Refs. [11,12,14,20,21], Churchill and coauthors have

also discussed an effect that has been neglected in previous
research: the deviation of the heat flux density distribution
due to the shear stress distribution across the channel. They
have suggested the use of the correction term c, which can
be included in the calculation of the heat flux ratio, as
shown in the following equations for equal and uniform
heating from one plate, Eq. (6a) and two plates, Eq. (6b),
respectively:

q
qw

¼ ð1þ cÞ 1� yþ

2hþ

� �
ð6aÞ

q
qw

¼ ð1þ cÞ 1� yþ

hþ

� �
ð6bÞ

From Eqs. (4), (5) and (6b), temperature profiles can be
calculated by integration for the case where two plates are
heated uniformly and equally [21]

Tþ ¼ Pr
Z yþ

0

ð1þ cÞ 1� yþ

hþ

� �
1þ Pr

Prt

ðu0v0Þþþ

1�ðu0v0Þþþ

� �dyþ ð7Þ

where Prt is the turbulent Pr. Similarly, for one heated
wall, the temperature profile can be found from the follow-
ing equation:

Tþ ¼ Pr
Z yþ

0

ð1þ cÞ 1� yþ

2hþ

� �
1þ Pr

Prt

ðu0v0Þþþ

1�ðu0v0Þþþ

� �dyþ ð8Þ

where the correction term c for two heated walls is calcu-
lated from the following equation:
For one heated wall, the equivalent correlation is
To summarize, one needs empirical equations for ðu0v0Þþþ
and Prt, in order to solve for the mean velocity and temper-
ature according to this model.

2.3. Heat balance

The heat balance equations have been developed by
Teitel and Antonia [8] for fully developed turbulent
channel flow for different cases of heating as follows:

Case 1: Both walls are heated at the same constant heat
flux uniformly and equally

1

Pr
dTþ

dyþ
þ ðT 0v0þÞ ¼ q

qw

ð11Þ
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Case 2: One wall (at y+ = 0) is heated with constant heat
flux uniformly and the second wall is kept adiabatic

1

Pr
dTþ

dyþ
þ ðT 0v0þÞ ¼ q

qw

ð12Þ

Substituting Eq. (6) in (11) and (12) yields the following
heat balances when the correction c for the shear stress
across the channel is taken into account:

1

Pr
dTþ

dyþ
þ ðT 0v0þÞ ¼ 1� yþ

hþ

� �
ð1þ cÞ ð13Þ

1

Pr
dTþ

dyþ
þ ðT 0v0þÞ ¼ 1� yþ

2hþ

� �
ð1þ cÞ ð14Þ

Eqs. (13) and (14) apply to Cases 1 and 2, respectively.

2.4. Direct numerical simulation

Details regarding the direct numerical simulation (DNS)
algorithm used in the present work and its validation with
experiments can be found in Lyons et al. [22] and in Gunther
et al. [23]. The DNS of plane Couette flow has been discussed
in [18,19]. The flow in both Poiseuille and Couette cases is
for an incompressible, Newtonian fluid with constant prop-
erties. In Poiseuille channel flow, the flow is driven by the
constant pressure gradient, and in plane Couette flow, the
flow is driven by the constant shear stress caused by
the two channel walls moving in opposite direction.

For Poiseuille flow, the Reynolds number, Re, was 2660
(based on the mean centerline velocity and the channel
half-height). The simulation was done on a 128 · 65 · 128
grid in the x,y,z directions, respectively. The dimensions
of the computational box were (4ph, 2h, 2ph) with h = 150
in wall units. The flow was periodic in the streamwise
and spanwise directions. For the plane Couette flow, the
Reynolds number was also 2660 (based on half the relative
velocity of the two walls and the channel half-height). The
simulation was done on 256 · 65 · 128 grid with computa-
tional box dimensions (8ph, 2h, 2ph). The computational
box was doubled in the streamwise directions, relative to
the plane channel flow, to take into account the large veloc-
ity structures reported in Couette flow [24–26].

2.5. Lagrangian scalar tracking method

The Lagrangian scalar tracking (LST) method was used
to generate the mean temperature profiles, by tracking heat
markers in the flow field created by the DNS. The motion of
the heat markers was decomposed into a convection part
and a molecular diffusion part. The convective part was cal-
culated from the fluid velocity at the marker position. The
velocity field resulting from the DNS was used to interpolate
at each particle position with a sixth order Lagrange polyno-
mial scheme in the streamwise and spanwise directions and a
Chebyshev interpolation scheme in the wall normal direc-
tion [27]. The effect of molecular diffusion was simulated
by imposing a 3-D random walk on the particle motion,
which was added on the convective part of the motion after
each time step, Dt, and took values from a Gaussian distri-
bution with zero mean and standard deviation, r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dt=Pr
p

, for each one of the three space dimensions in vis-
cous wall units (this follows from the Brownian motion
theory). The building block for the Lagrangian simulation
was the probability function P 1ðX � x0; Y ; t� t0j~x0; t0Þ that
a heat marker released at the wall of the channel at x = x0

at time t0 is going to be at a location (X,Y) in the channel.
The physical explanation for this probability function is that
it represents temperature contours, or snapshots of a cloud
of contaminants, released instantaneously at x0 = 0. By inte-
grating (or, in the discrete case, summing up) P1 from time t0

to a final time tf, the behavior of a continuous line source,
represented by the probability function P2, can be obtained,

P 2ðX � x0; Y Þ ¼
Xtf

t¼t0

P 1ðX � x0; Y ; tj~x0; t0Þ ð15Þ

Details of all the Lagrangian runs used here were
reported in [17] and [19]. In addition, raw data from the
simulations are available on-line [28]. For Poiseuille chan-
nel flow, 16,129 markers were released instantaneously at
the channel wall for high Pr, and 145,161 markers were
released at a time for low Pr, (these are referred to as run
E and run C, respectively, in Table 1 of Ref. [17]). For
plane Couette flow, 145,161 markers were released instan-
taneously at the channel wall for all the Pr, referred as run
A and run B in [19]. Descriptions and validations for the
LST methodology can be found elsewhere [29–34].

The mean temperature profile can be synthesized using a
series of continuous line sources covering one (the bottom),
or two walls of the channel (both the top and the bottom).
Heat flux added to the bottom wall can be simulated by
integrating P2 over the streamwise direction

T ðyÞ �
Xxf

x¼x0

P 2ðX � x0; yj~x0Þ

¼
Xxf

x¼x0

Xtf

t¼t0

P 1ðX � x0; y; t � t0j~x0; t0Þ

tf !1 and xf !1 ð16Þ

The fully developed mean temperature for the case of heat
flux from both planes, therefore, can be calculated using

T ðyÞ ¼ T ðyÞ þ T ð2h� yÞ ð17Þ

and assuming that the temperature is symmetric around the
center-plane (i.e., the plane y = h). Details regarding the
mean temperature profiles can be found in [17–19].

3. Results and discussion

3.1. Total shear stress due to turbulence

The fraction of the total shear stress due to turbulence,
ðu0v0Þþþ, based on the DNS results for channel and Couette
flow, is presented in Fig. 1 as a function of the distance
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flow. The simulations are for h+ = 150.
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from the channel wall. This fraction goes from zero at the
channel wall to almost one at the center of the channel. As
shown in Fig. 1, the fraction of total shear stress due to tur-
bulence in channel flow is smaller than that of Couette flow
at the same distance from the wall.

A correlation equation for the turbulent shear stress
ðu0v0Þþþ has been introduced by Danov et al. [21] in the
form of a power mean of three limiting expressions for
ðu0v0Þþþ (the asymptotes for y+! 0 and y+! h+, and an
exponential decay for the logarithmic region
30 < y+ < 0.1h+). The turbulent shear stress is calculated
based on the half channel height and the distance from
the wall as in the following equation:

ðu0v0Þþþ ¼ 0:7
yþ

10

� �3
" #�8=7

þ exp
�1

0:436yþ

	 
����
0
@

� 1

0:436hþ
1þ 6:95yþ

hþ

� �����
�8=7
1
A
�7=8

ð18Þ

A plot of this correlation varying with the distance from
the wall is also presented in Fig. 1. It is close to the profile
for Poiseuille flow but it is smaller than the Couette flow
profile. It should be noted that the coefficients 0.436 and
6.95 in Eq. (18) were obtained based on measurements
for pipe flow in the Princeton superpipe [35] for very high
Reynolds numbers. These data have now been updated
[36], but predictions of ðu0v0Þþþ and of temperature profiles
based on updated coefficients have not been found to differ
significantly than using Eq. (18) [16].

3.2. Normal heat flux

The normal heat flux is found using Eqs. (13) and (14)
for one heated wall and two heated walls, respectively.
The heat flux as a function of y for one heated wall is pre-
sented in Fig. 2(a) and (b). As the Pr increases, the normal
heat flux increases. As seen in Fig. 2(a) and (b), the normal
heat flux increases to a maximum of 1 for high Pr, and less
than 1 for low Pr. For high Pr, such as 2400 and up, this
maximum occurs very close to the wall. The normal heat
flux is approximately 0.55 at half channel height for all
the Prandtl numbers.

The normal heat flux in the case where both walls are
heated uniformly and equally is shown in Fig. 3(a) and
(b) for Poiseuille flow and Couette flow, respectively. It fol-
lows the same trends as in the one heated wall case: the
normal heat flux increases as Pr increases. The normal heat
flux reaches a maximum pretty fast, and then decreases to
zero at half channel height. The result for Pr = 0.7 shows a
very good agreement with previously reported normal heat
flux by Kasagi et al. [37]. Results from Kawamura et al. [9]
and Kim and Moin [38] for Pr = 0.7 are also shown in
Fig. 3(a).

The fraction of the normal heat flux due to turbulence is
presented in Fig. 4(a) and (b) for one heated wall and
Fig. 5(a) and (b) for two heated walls. In Fig. 4(a), for
Poiseuille channel flow with one heated wall, this fraction
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increases to 1 quickly (e.g., y+ � 40 for Pr = 6, 10; y+ � 10
for Pr = 200, 5000 and y+ � 2 for Pr P 2400) and then
stays constant. This means that the normal heat flux is only
due to turbulence. The normal heat flux for Couette flow
with one heated wall is shown in Fig. 4(b) to exhibit the
same trend. However, it increases to 1 faster than in
Poiseuille channel flow. For low Pr in both cases, the frac-
tion never gets to 1, even at the center of the channel. The
heat flux is affected by both convection and diffusion
throughout the channel for low Pr.

The normal heat flux for the case where both walls are
heated uniformly and equally is shown in Fig. 5(a) and
(b). The results look similar to the results in Fig. 4(a) and
(b). It does not matter if one wall or two walls are heated;
it takes the same distance to get to the turbulence effects-
only region for all the Pr.
3.3. Mean temperature

The temperature profiles for the case when one wall is
heated constantly are shown in Fig. 6(a) and (b) for Poiseu-
ille channel flow and Couette flow, respectively, and in
Fig. 7(a) and (b) for the two heated walls case. The temper-
atures presented in the figures were calculated using the fol-
lowing methods:

Method 1: Using DNS/LST method – the mean temper-
ature profiles have been presented previously in Refs.
[17,19].

Method 2: Using Churchill’s prediction (Eqs. (7) and
(8)), where the turbulent Prandtl number, Prt, is calculated
from our DNS/LST data as follows:

Prt ¼
Em

Ea
and Ea ¼

ðT 0v0Þþ
dTþ
dyþ

and Em ¼
ðu0v0Þþ

dUþ
dyþ

ð19Þ

and ðu0v0Þþþ is also from DNS/LST data as presented in
Fig. 1.

Method 3: Using Churchill’s correlation for ðu0v0Þþþ as
in Eq. (18), and direct calculation of turbulent Prandtl
number Prt from our DNS/LST data.

Method 4: Using the Kays empirical correlation for Prt

[39] and the DNS/LST-obtained ðu0v0Þþþ. The correlation

suggested by Kays, Prt ¼ 0:7m
Prmt
þ 0:85 (where mt is the eddy

viscosity), has been written in terms of ðu0v0Þþþ (using Eq.
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Poiseuille channel and (b) Couette flow (h+ = 150 for both cases).
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Fig. 5. Turbulent heat flux as function of normal position for the case of
uniform and equal heating from two plates for (a) Poiseuille channel and
(b) Couette flow (h+ = 150 for both cases).
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(4) and the definition of ðu0v0Þþþ one can see that

½1� ðu0v0Þþþ�=ðu0v0Þþþ ¼ m=mtÞ in the following form [12]:

Prt ¼
0:7½1� ðu0v0Þþþ�

Prðu0v0Þþþ
þ 0:85 ð20Þ

Since Kays suggested that the coefficient 2.0 works better
than 0.7 for low Pr fluids, we used 2.0 for Pr < 1.

Method 5: Using Eq. (18) for ðu0v0Þþþ and Eq. (20) for
Prt.

For low and medium Pr, the temperature profiles were
predicted within reasonable errors (hardly seen in the
logarithmic scale in Figs. 6 and 7). However, for high
Pr (Pr = 500 and 15,000 in the plots, and other Pr from
100 and up), Churchill’s prediction gives a good agree-

ment with the DNS/LST results. However, if ðu0v0Þþþ
from Eq. (18) or Kays empirical solution for Prt from
Eq. (20) is used, the variations are high. These variations
are shown in Table 1 (for one heated wall) and in Table
2 (for two heated walls) for Poiseuille flow and Couette
flow, respectively. When using Method 1, the results are
consistent and within 10% error. When using other
methods, the errors are high for very high Pr or very
low Pr. These methods give reasonable results for low
to medium Pr (from 0.1 to 10). The sensitivity of these

variations to the change of ðu0v0Þþþ is high, considering
that ðu0v0Þþþ is only slightly different from the value
obtained from DNS.

The results appearing in Tables 1 and 2 should not be
very surprising. They clearly validate the algebraic model

predictions when ðu0v0Þþþ and Prt are calculated directly
using our data, instead of employing empiricisms applica-
ble to other, different situations. In fact, Churchill’s deriva-
tions have been developed for high Re cases (h+ > 300) and
for Pr applicable to heat transfer (Pr 6 100). Eq. (18) in
particular, is expected to work better for h+ > 300 – the
lower limit for the development of a logarithmic region
in the mean velocity profile, which is necessary for the der-
ivation of Eq. (18). It should also be noted that Pr on the
order of thousands applies to cases of mass transfer rather
than heat transfer, so one should more accurately think of
these cases as high Schmidt number cases. Even though it
would be very convenient to use Eqs. (18) and (20) to esti-
mate the temperature in a turbulent flow field, the results
for this method of calculation are acceptable only for spe-
cific cases of Pr. Calculations that are based on publicly
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Fig. 7. Temperature predictions using different methods compared to
DNS/LST data for the case of uniform and equal heating from two plates
for (a) Poiseuille channel and (b) Couette flow (h+ = 150 for both cases).

Table 1
Errors of predicted temperatures for one heated wall using different

methods; Percent error ¼ jT�T Method 1 j
T Method 1

� 100%: (a) Poiseuille channel flow

(h+ = 150), and (b) Couette flow (h+ = 150)

Pr Method (2) Method (3) Method (4) Method (5)

Panel a: Poiseuille flow, error (%)

0.010 10.241 205.094 16.224 16.076
0.025 4.234 5.762 13.422 12.689
0.050 7.959 5.042 14.795 12.964
0.1 0.587 3.883 1.274 4.033
0.7 2.601 4.959 7.708 9.494
1 5.865 4.005 21.892 23.107
3 0.789 3.264 4.634 4.368
6 4.558 1.924 6.294 7.910
10 5.945 1.530 3.119 6.282
200 8.913 14.924 33.134 6.512
500 7.428 24.218 52.402 5.371
2400 5.222 50.012 75.318 17.432
7000 4.066 69.184 85.576 49.639
15,000 4.295 70.666 91.548 60.165
50,000 5.750 98.809 95.843 77.605

Panel b: Couette flow, error (%)

0.1 8.327 15.277 8.295 27.231
0.7 5.795 19.420 13.910 33.440
6 7.747 16.758 12.066 3.022
10 9.141 14.852 12.456 4.556
200 14.543 37.544 43.112 20.002
500 11.467 44.229 62.813 7.808
2400 9.029 61.573 83.107 16.063
7500 8.629 80.087 90.685 40.994
15,000 8.751 87.041 93.785 58.640

Table 2
Errors of predicted temperatures for two heated walls using different

methods, Percent error ¼ jT�T Method 1 j
T Method 1

� 100%: (a) Poiseuille channel flow

(h+ = 150), and (b) Couette flow (h+ = 150)

Pr Method (2) Method (3) Method (4) Method (5)

Panel a: Poiseuille flow, error (%)

0.010 29.277 100.663 22.630 22.514
0.025 5.596 15.553 14.352 13.727
0.050 4.498 5.780 12.781 11.243
0.1 1.441 2.212 1.163 3.837
0.7 0.549 2.890 9.509 9.898
3 1.411 3.026 3.367 2.821
6 4.899 1.714 7.676 8.784
10 6.214 2.276 2.156 4.892
200 8.907 16.707 33.209 1.233
500 7.443 24.226 52.458 5.419
2400 5.227 50.036 75.343 17.449
7000 4.150 71.813 85.590 39.051
15,000 4.294 70.671 91.556 60.173
50,000 5.751 98.813 95.847 77.612

Panel b: Couette flow, error (%)

0.1 9.881 32.989 5.841 20.486
0.7 6.053 12.896 13.995 29.063
6 8.256 14.433 11.099 2.930
10 9.494 13.066 11.691 4.540
200 14.546 37.582 43.033 20.163
500 11.491 44.185 62.801 7.893
2400 9.042 61.590 83.117 16.052
7500 8.640 80.067 90.689 40.977
15,000 8.754 87.109 93.782 58.596
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available data from Eulerian DNS [40] also support the
above conclusions (the data are from the University of
Tokyo web site, for fully developed thermal field in 2D tur-
bulent channel flow, with Pr = 0.71, h+ = 150, Re = 2280,
generated by the code CH122_PG.WL1). Analysis of these
data in a similar manner as in Table 2 (i.e., using the Eule-
rian DNS data instead of the LST/DNS data, and compar-
ing the results of each method to the Eulerian DNS results)
shows an error of 2.847% when using Method 2; 4.579%
for Method 3; 8.003% for Method 4; and 8.389% for
Method 5.

Since the model predictions appear to deviate from the
simulation results mostly at high Pr, one could attempt
to find a correction for this case. Sensitivity analysis of
the prediction model [16] demonstrated that the predictions
are not very sensitive on the values of the constants appear-
ing in Eq. (18). It could be then practical to introduce a
correction factor, Cf, in Eqs. (7) and (8) as follows:

Tþ ¼ Pr
Z yþ

0

ð1þ cÞ 1� yþ

hþ

� �
1þ Cf � Pr

Prt

ðu0v0Þþþ

1�ðu0v0Þþþ

� � dyþ

for two heated walls ð21Þ



Table 3
Correction factor and percent errors of predicted temperatures when
applying a correction factor for Method (3);

Percent error ¼ jT�T Method 1 j
T Method 1

� 100%: (a) Poiseuille channel flow (h+ = 150),

and (b) Couette flow (h+ = 150)

Pr One heated wall Two heated walls

Cf Error (%) Cf Error (%)

Panel a

0.01 1.0 23.098 0.9 12.798
0.025 1.2 4.121 0.9 9.004
0.05 1.1 3.602 0.9 2.180
0.1 1.3 2.009 1.1 1.604
0.7 1.0 4.959 1.0 2.890
3 1.0 3.264 0.9 2.810
6 1.0 1.924 1.0 1.715
10 1.0 1.530 0.9 1.315
200 1.7 0.710 1.9 1.203
500 2.8 0.852 2.8 0.881
2400 7.2 0.753 7.2 0.748
7000 6.8 0.519 10.0 0.480
15,000 8.2 0.250 8.2 0.245
50,000 6.0 0.268 6.0 0.267

Panel b

0.1 1.8 8.998 1.2 5.516
0.7 1.5 7.417 1.4 4.576
6 1.5 3.505 1.4 2.338
10 2.4 2.531 1.4 1.587
200 4.2 1.075 4.2 0.996
500 6.0 0.795 6.0 0.769
2400 11.0 0.579 10.9 0.430
7500 12.3 0.266 12.3 0.232
15,000 10.4 0.208 10.4 0.200

P.M. Le, D.V. Papavassiliou / International Journal of Heat and Mass Transfer 49 (2006) 3681–3690 3689
and

Tþ ¼ Pr
Z yþ

0

ð1þ cÞ 1� yþ

2hþ

� �
dyþ

1þ Cf � Pr
Prt

ðu0v0Þþþ

1�ðu0v0Þþþ

� � dyþ

for one heated wall ð22Þ

The practical advantage of using this correction factor is
that now we need to search for the values of one parameter,
instead of the values for four parameters that appear in Eq.
(18). However, by introducing Cf we introduce empiricism
in Eqs. (7) and (8), reducing, thus, their purity. This coeffi-
cient Cf is only dependent on Pr. Given this reservation,
Table 3 shows the values of Cf that can be used with Meth-
od 3 and the errors associated with these values. It can be
seen that a choice of Cf at around 10 can reduce the errors
to less than 1% for the large values of Pr (Pr P 500).

4. Conclusions

An investigation of the recent theory for turbulent con-
vection developed by Churchill and coauthors has been
presented. According to the Churchill model, fully devel-
oped flow and convection can be expressed as local frac-
tions of the shear stress and the heat flux density due to
turbulent fluctuations; and the fully developed temperature
can be predicted if the velocity field and the turbulent
Prandtl number are known. In effect, the model suggests
that the mean temperature scales with the fraction of the
heat flux due to turbulence. Application of the theory for
an extensive range of fluids and for different turbulence
structures and comparison to Lagrangian simulation
results shows a deviation of less than 10% for most Pr,
even though the model equations were developed for flows
with higher Reynolds numbers than those employed by
DNS. The main contributions to these deviations were
due to the use of a model for Prt and for ðu0v0Þþþ. A
correction factor can be introduced for very high Pr fluids,
which can provide model predictions that are within
1% of the simulation results.
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